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Stability to infinitesimal disturbances-when a parallel magnetic field is im- 
posed-is investigated for the flow in the boundary layer set up by two-dimen- 
sional motion between parallel planes of a viscous, incompressible, electrically 
conducting fluid under the influence of a transverse magnetic field. The flow 
is assumed to take place at  low magnetic Reynolds number. The usual asymp- 
totic methods are employed for the solution, but, apart from the Tollmien- 
type power series solution, an exact solution of the inviscid equation is obtained 
in terms of the hypergeometric function and ibs analytic continuation. Curves 
of neutral stability for two-dimensional disturbances are calculated and the 
results for critical Reynolds number modified to take into account three-dimen- 
sional disturbances. The parallel magnetic field is found to have a strong stabiliz- 
ing influence. 

1. Introduction 
Since the formulation by Michael (1953) and Stuart (1954) of the linear stability 

problem for a two-dimensional parallel flow of a viscous, incompressible, electric- 
ally conducting fluid in a uniform magnetic field a number of papers have appeared 
on this topic. The case which! has been considered most often is the one where 
the magnetic field is parallel to the flow direction, but, unfortunately, almost all 
of the work published on the topic suffers from the perpetuation of an error made 
originally by Michael (1953) in concluding that Squire’s theorem for the non- 
conducting flows (two-dimensional small disturbances of a parallel flow are the 
least skable) remains valid. It was fairly recently that Hunt (1 966) showed the in- 
correctness of this and of certain other results which depended on this assumption. 
In  particular, he established that for finite values of the magnetic Reynolds 
number no parallel magnetic field can completely stabilize a flow which is 
unstable without it. The parallel magnetic field is therefore seen to be a lesser 
stabilizing agent than had appeared from the earlier analysis of Stuart (1954), 
Tarsov (1960) and others, which took into account the two-dimensional dis- 
turbances only. All the evidence however still points overwhelmingly to the 
conclusion that the imposition of a parallel magnetic field enhances the stability. 

As far as experiments are concerned, the work done on parallel flows wikh 
parallel magnetic field is rather small in volume and nothing as dramatically 
corroborative of the theory as that achieved by Shubauer & Skramstadt (1947) 
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for the non-conducting case has been achieved. It would be highly desirable 
now if more experiments were to be carried out to test the hydro-magnetic 
stability theory and particularly so, since the three-dimensional disturbances 
have been shown to play a different de-stabilizing role in this case. It is well 
known though, that the predictions of the linear stability theory in the non- 
conducting case are not in agreement with the experimental data on the stability 
of plane Poiseuille flow but do agree closely in the case of the flow in the boundary 
layer over a flat plate. It would seem probable therefore that success might 
again be achieved with the boundary-layer flows. It is with this in mind that we 
have undertaken hhe analysis that follows. The situation envisaged should be 
relatively simple to realize in the laboratory and may thus be used for providing 
a testing ground for the theory. 

We consider the flow of an incompressible fluid of uniform conductivity g, 
density p, kinematic viscosity u and magnetic permeability ,u which takes place 
between parallel planes under the influence of a uniform magnetic field. The 
magnetic field has a parallel as well as a transverse component with respect to 
the flow direction. As in Lock's (1955) analysis of the stability of Hartmann 
flow, we found that the transverse component of the magnetic field, to the usual 
degree of approximation, enters the stability problem only by virtue of the de- 
formation it causes in the velocity profile, and not by its direct influence on Dhe 
disturbances. The problem of the stability of the flow under consideration then 
reduces to examining the stability of the boundary-layer profile under the 
influence of the parallel component of the magnetic field. 

2. The mathematical formulation 
We choose the x1 axis of a system of rectangular Cartesian coordinates 

(xl, x2, xJ to lie in the flow direction, and choose the origin of co-ordinates so as to 
make the boundary planes have the equations x2 = a. An externally imposed, 
uniform magnetic field (PI, n2, 0) is supposed to exist. 

Under these circumstances, assuming that the total flux of current in the x3 
direction is zero, it  may be shown (see Hartman 1937) that the velocity profile 
g(x2) and the induced magnetic field z1(x2) in the x1 direction (the total magnetic 
field distribution in the flow region is of the form (Pl +hl(z2) ,  g2, 0 ) )  are given by 

cosh M* - cosh (M*x,/a) 
V ( x 2 )  = u,- > (2.11 cash M* - 1 

where U, is the speed at  the centre and M* = ,ug2a J(cr/pu) is a dimensionless 
parameter known as the Hartmann number. The behaviour of g(x2), the so-called 
Hartmann profile, is well documented, and its significant feature is that increas- 
ing values of M* rapidly induce in it a boundary-layer behaviour, giving 
uniform flow in the central portion between the planes and large velocity gradi- 
ents near the planes. In  fact, if say, we expand the velocity distribution in the 
lower half of the channel, we can write it as 

D(x,) = U, [I - exp { (iW*/a) (a, + x,)}] + O ( e - M * ) ,  
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so that, for only moderately large values of M * ,  the boundary layer is, to a very 
good approximation, exponential in character and is of thickness a/M*.  We, in 
this paper, shall investigate the stability of this flow for the case when M” is 
sufficiently large to allow the velocity distribution to be represented as an 
exponential (M* 5 would be quite adequate). The reader will therefore under- 
stand our motivation for choosing the transformation from x 2  to y and the 
scaling relationships when he comes to equation (2.6). 

To analyse the stability we follow the standard procedure and disturb the 
steady-state velocity and magnetic fields by small periodic velocity and magnetic 
fields, v, h respectively, of the form 

If now the usual manipulations are carried out (see, for example, the survey 
article by Tatsumi 1962) whereby the disturbed field variables are substituted 
in the governing equations of magneto-hydrodynamics, the squares and higher 
powers of small quantities neglected, and v,, v3, &, &eliminated from the resulting 
equations, then the equations for the disturbance take the form 

i H2 ( U  - c )  8 + -- (el’ -p”) = (1  + h,) $5 + 7- $5’) 
aRwt Za: 

where dashes denote differentiation with respect to  y, which along with the other 
dimensionless quantities appearing in equations (2.4) and (2.5) has been obtained 
by writing 

(2.6) I y = (a  + x,)/L, L = a/M*,  U(y) = o ( x 2 ) / U o  = 1 - e-y, 

a: = a,L, p = L J(.; + a:;), c = iw/a, U,) 
- -  

$5 = vz/Uo, 6’ = L,/iEf,, fI2 = H2/H, ,  h, = h,/H,, 
R = U,L/v, R, = 42T,UcTu0L, A = J(,u/~~TP) Ho/U,. 

To be able to proceed further with the analysis of the formidable problem 
posed by the equations (2.4) and (2.5) it was found necessary to restrict attention 
to  some special range of the prameters. We shall consider flows of low magnetic 
Reynolds number and at this stage make the approximation aR,, < 1. This, 
as Stuart (1954) and others have pointed out, is a useful approximation, in that 
as far as experiments in the laboratory are concerned, it is usually more than 
adequately met. 

The approximation aR, < 1 allows us to neglect terms in h, and also the 
(U-c )6 ’  term in (2.5). However, for the parallel magnetic field to have any 
effect upon stability we require A2R, to remain finite so that HI has to be large. 
For A2R, N 1 we find - M*/R* where R” = U,a/u. This gives 

H2/Bl ,., 1/Rb, 
46-2 
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R being based upon the boundary-layer width. Now, the values of R in our calcu- 
lations are very large and we find a posteriori that the maximum value of l /R& 
is only about &. We thereforeneglect in (2.4) and (2.5) terms in H? compared to 
terms O(1). 0 can then be eliminated between (2.4) and (2.5) giving 

( 2 - 7 )  ( U - C) ($” - p2$) - U“$ + iaQ$ = ( l / iaR) ($iv - 2P’$” + /34$), 

where Q = A2R, = ( ,U~H~CTU)/(CTU,M*).  (2 .8)  

$ = $ ‘ = O ,  y = o ;  q5)$r+o, y+m. (2.9) 

Equation (2.7) has to be solved subjecc to the boundary conditions 

We will now solve ( 2 . 7 )  for the neutral case, i.e. when c is real. Our problem is 
reducible very simply to an equivalent two-dimensional problem by writing 
in (2.7) 

and this two-dimensional form of the equation (with /3 = a) will be considered. 
Before Hunt’s (1966) paper, it was thought that one could deduce from (2.10) 
that the minimum critical Reynolds number is given by the two-dimensional 
disturbances. This led most authors to consider the reduced problem only. 
As we said earlier, Hunt has shown this to be incorrect and we shall modify our 
results to take into account the effect of three-dimensional disturbances. 

The exponential profile considered here also occurs in the boundary -layer 
flow on a flat plate with constanb suction. The methods that follow have largely 
been adapted from the paper by Hughes & Reid (1965) on the stability of the 
asymptotic suction profile. 

(2.10) aR = @, aQ = pQ, 

3. Solution of the inviscid equation-analytical method 

particular case is 
Ignoring terms of O(aR)-l  we obtain the inviscid form of (2.7) which in our 

( 1 - e-y - c) (4’’ - a”) + e-V$ + iaQ$ = 0. (3.1) 

To be able to satisfy the boundary conditions (2.9) the solution of (3.1) that 
remains bounded as y + 00 is required. This solution to be denoted by @(y) 
provides an asymptotic approximation to a solution of (2 .7 )  valid in a region of 
the complex y plane determined by the inequality 

- :T < arg (y - ye) < $7, ( 3 4  

and excluding the immediate neighbourhood of the critical point ye. ye in this 
case is determined from the equation 1 - c = e-yc so that 

yc = -log(l-c). (3.3) 

6 = + J(a2-iS)  where S = aQ/(l -c) ,  (3.4) 

5 = e-Y/(l-c), $ = exp{-S(y-yc)}f(<). (3 .5 )  

If we now write 

and make the following transformations 
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then (3.1) reduces to the hypergeometric equation, 

(3.6) 
d2f df [(l-5) - + (26+ 1) (1 -5)- + (1  +iS)f = 0. 
dE2 

By making the transformation [ = e-”/( 1 - c )  we have mapped the point 
y = 00 from the y-plane into the origin in the [-plane, and so we require the 
solution of (3.6) regular in the neighbourhood of [ = 0. This solution is of course 
a constant multiple of the hypergeometric function F(p ,  q ;  r ;  [) given by 

(3.7) 

where p = 6+ , / (1+a2)  q = 6- , / (1+a2) ,  r = 1+26. (3.8) 

We shall require the inviscid solution @(y) to be normalized by the condition 
@(yJ = 1 and so we take f (5 )  in the form 

rb-1 
r ( P )  r(q) 

Gauss’s formula gives F(p,q;  r ;  1) = - (3.10) 

Since p + q - r  = - 1 < 0, the series (3.7) is absolutely convergent for 151 < 1. 
f(5) therefore provides a valid solution in this region of the 6-plane. 

The point y = 0 where the other boundary conditions have to be satisfied 
has been mapped into the point [ = to = 1/( 1 - c )  > 1 for 0 < c < 1, so we require 
the analytical continuation of the solution (3.9) into the region \[I > 1. This is 
done by cutting the 5-plane from [ = 1 to 6 = co along the positive real axis. 
To satisfy the inequality (3.2), one has to keep to a path lying below the critical 
point yc in the y-plane. This corresponds in the 6-plane, to taking a path lying 
above the critical point 5 = tC = 1,  so the cut in the [-plane is supposed to lie 
below the real axis. The required analytical continuation valid in the region 
]I-[] < 1 of the cut [-plane can then be written in the form (see Erdelyi, 
Magnus, Oberhettinger & Tricomi 1953) 

x ($(p+ 1 +n) - $(q+ 1 + w )  - $(n+ 1) - $(n+ 2)). (3.12) 

$ ( z )  in the above is the digamma function given by 

$ ( z )  = r’(4/w). 
Equation (3.11) gives the value of f(co) so long as 11 -[,,I < 1, i.e. to < 2 ,  this 
requires c < a. To keep to a path that lies above the critical point in the (-plane, 
log(1 -5) must be taken as log 11 --[I -ni for [ > 1. 

It may be verified a posteriori that the values of c on the neutral curves are 
small. Following Hughes & Reid (1965) we therefore obtained the values off ’(to) 
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by expanding in terms of the small parameter s = c / ( l  - c ) .  These expressions 
forf(5o) andf’(5o) are 

fg,) = 1 + ( C - B , C ~ )  (iogs-ni)+sg,(s)-s2g,(s)+o(s310g,), (3.13) 

+ go(q - 2g1(6) c + 3g2(6) €2 + o(~3 10g €1, (3.14) 

f’( ,go) = (1 + log € - 7ri) ( 1 - Bo€ + B,$) - (log € - Ti) (BOE - 2B1€2) 

(3.15) I where B,(S) = s- gix, 
B, (8)  = $8 + - giS,y - - 2 - 8 2  1 2  1 2  9 

go(S) = 9% + 1)  + 9(4+ 1) - $(2) - $(1)1 

Sl(Q = BO{$(P + 2) + $ 4 4  + 2) - $(3) - $.(2)}, 

92(6) = 4 W ( P  + 3) + @(4 + 3) - $(4) - $r(3)). 

The argument of the digamma function occurring in (3.15) is complex, and 
this makes the numerical calculations somewhat laborious. The actual numerical 
work was done by expanding gj(j = 0 , 1 , 2 )  in power of 6 using Riemann zeta- 
functions. In  the region of interest a and 161 are of the same order as c, and S is 
of the order c2, and so the terms of order c3 are given by 

an1 6 % ~  en3 Xn4 when n, + n2 + n3 + 2n4 = 3. 

In the expression forf(to) andf’(to) that emerged upon expanding, only terms up 
to this order were retained, giving 

E 0126 a4e 

6 362 463 
f((,) = 1 + {s-  6s2) (loge-ni) -- - - - 8s- - 

a4s a% 
+ 2 < ( 3 ) & + { 4 - 2 < ( 3 ) } a 2 e + { 2 < ( 3 ) -  1 } i f J ~ + 8 ~ - s s $ + C ~ 6 ,  (3-16) 

f’(t0) = (1 +logs -Ti) (1 - 6€+ pf?+ &Ss) - (logt:-ni) (6s- 6s2- $is€) 

9 2)6+{- -2<(3)}a2+{2<(3)- 1)iS 
1 8.2 

6 - 4  +a<( 
6 62 63 

- 2{2<( 2) - $} € a 2  - 2{; - 2[( 2)) ixt- - $6€2, (3.17) 

where [ ( z )  is the Riemann zeta-function. 
The curve of neutral stability for a = 0-02 (figure 4) was calculated using 

the expressions (3.16) and (3.17) and was found to beincomplete agreement with 
the one calculated for the same value using the second method which follows. 

4. Solution of the inviscid equation-numerical method 

by (see Stuart 1954) 
The inviscid equation also has the well-known Tollmien-type solutions given 

Qh) = (Y-YJP,(Y-Yc), I 
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where PA, P, are power series in y - yc, the leading terms of which are unity, and 
a subscript c denotes evaluation at y = y,. The difficulty in using these, when one 
boundary is at  infinity, arises from having to find a solution that remains bounded 
as y -+ 00. Since the point at  infinity is an irregular singularity of the inviscid 
equation (3.1)) the power series PA and PB are convergent only for Iy- y,/ < co, 
and this is the cause of the trouble. Hughes & Reid (1965) have shown in the ordi- 
nary hydrodynamic case that this difficulty may be overcome for most profiles 
by obtaining another representation for @ valid in the neighbourhood of y = co 
and then matching the two solutions at  some point in their common domain of 
validity. Their method, outlined below, remains valid for the hydromagnetic 
case under consideration here. 

If the required inviscid solution is normalized by the condition @(yJ = 1, 
then it has to be of the form 

@(Y) = K $ A ( y )  f $ B ( Y ) ,  (4.2) 

where $A and $B are given by (4.1) and K is a constant depending upon the 
parameters a, c and Q. To find K so that @ will remain bounded as y --f 00, the 
independent variable in the inviscid equation is transformed to w = e--Y thus 
mapping the point y = 00 into the point w = 0. The resulting equation has the 
point w = 0 for a regular singular point with exponents 5 S and is 

(4.3) 

a dot denoting differentiation with respect to w, and we have assumed that 
U --f 1 as y -+ 00. The solution of (4.3) regular in the neighbourhood of w = 0 is 

( U  - c) ( w 2 4  + W d  - a") - U"$ + iaQ# = 0, 

of the form 
@(y) = EwSPm(w), (4.4) 

where h' is a constant and P,(w) is a power series in w. This form of @ is valid in 
the region 0 < y-  ye < co. Thus there are now available two overlapping repre- 
sentations for CD in the forms (4.2) and (4.4) and the constants K and h3 are deter- 
mined by making @, @' continuous a t  some convenient point in their common 
domain of validity. If yo is such a point then the equations determining K ,  h' are 

KaA(y0)  + @,(yo) = h3e-%F'm(e-uo), 

K$L(yo) +$;(yo) = -h'e-"o(SP,(e-yo) + e-YoP,(e-YO)) .  (4.5) 

For our profile the constant K can be calculated exactly. It is the coefficient of 
y - yc in the expansion of the regular part of exp { - S(y - y,)}f([),f(<) being given 
by the equation (3.11). After a little calculation it is seen to be 

K(6)  = 1 - 2y-6- ~ ( p +  1 )  - $(p+ l), ( 4-61 

where y = 0.5772 is Euler's constant. 
In  our calculations we used the form (4.6) for K.  $A and $B were calculated 

using the method of Frobenius and we record below the first few terms in the series 

$A = (y- y,) - +( 1 +is) (y- y,)2++(1 +a2+ *is- 4 8 2 )  (y-y,)3+ ..., 1 
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In the expression for $B above log (y - 9,) is to be taken as log I y - y,l - ni for 
y - y, < 0 (see Stuart 1954). 

AfCer experimenting it was decided to retain terms up to O(y,3) in ( P A  and $B. 

We found that for 0 = 0 this gave a neutral stability curve virtually indis- 
tinguishable from the one calculated by Hughes & Reid (1965). For 0 > 0 the 
values of yc are even smaller (see figure 5) on the neutral stability curves, so the 
approximation improves in accuracy. 

Im 

Re 

FIGURE 1 

RC 

FIGURE 2 
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5. The characteristic equation 
The required general solution of (3.1) can now be written in the form 

4 = C,@+Q2X3(7), (5.1) 

where C,, C, are constants and x3(r) is the viscous solution that is exponentially 
small for \y-ycl 9 laRUAI-* (see Stuart 1954). Imposing the boundary con- 
ditions (2.9) a t  y = 0 and eliminating Cl, C, gives the characteristic equation in 
the form 

where T~ is the value of y for y = 0. In (5.2) a prime on the left-hand side denotes 
differentiation with respect to q and on the right it denotes differentiation with 

0.35 H = 0 0 2  

Im 

0.10 015 0 2 0  0 2 5  0-30 0 3 5  0 4 0  0 4 5  

Re 

FIGURE 3 

respect to y. The right-hand side of (5.2) depends only upon the inviscid solution 
and is a function of a, c and Q, whereas the left-hand side depends only upon 
7,. To emphasize this, we can write (5.2) as 

(5.3) T(710) = G(a,  c ,  Q). 

Tfq,) is a universal function known as the Tietjens function and has been 
tabulated by several authors. In our numerical calculations we have used the 
tabulation due to Miles (1960). 

Equation (5.3) was solved by the graphical method given by Tollmien (1929). 
The real part of T was plotted against its imaginary part giving a curve with 
parameter 7,. On the same diagram was plotted the real part of G against its 
imaginary part for a single value of Q and a series of values of c and a. Equation 
(5.3), being complex, represents in general two relationships and the inter- 
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FIGURE 4. Curves of neutral stability. 
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FIGURE 5. Curves of neutral stability. 
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section of the T and G curves therefore, in general, determines two sets of eigen- 
values on the curve of neutral stability. The curves of neutral stability calculated 
for various values of a are shown in figure 4. Figures 1-3, show the T and G 
curves for Q = 0, 0.01,0.02 respectively. For the other values of Q for which the 
neutral stability curves have been calculated the G curves follow the same 
pattern as for Q = 0.01 and Q = 0.02 but get progressively close to each other and 
are difficult to distinguish separately. 

6. Results for two-dimensional disturbances 
When there is no magnetic field present, i.e. Q = 0, the G curves in figure 1 

move steadily upwards and away from the T curve as c increases. The G curve 
tangential to  the T curve determines a minimum value of the Reynolds number 
for which a real eigenvalue c exists. This is the critical Reynolds number Rcrit. 
The neutral stability curve for a = 0 in figure 4, calculated from the intersections 
of T and G curves in figure 1 is in agreement with the one given by Hughes & 
Reid (1965). The points inside the curve correspond to unstable disturbances 
and those outside to the stable disturbances. The two branches of the neutral 
stability curve both tend to the R axis, and also a and c both tend to zero, 
as R + 00. The asymptotic forms of the lower and upper branches of the curve 
respectively are (see Hughes & Reid 1965) 

Rf = a-b, Rf = 0.37a-2. 

When Q > 0, the G curves (figures 2, 3) lie above and away from the T curve 
for sufficiently small values of c showing that the eigenvalue c = 0 does not exist. 
As c increases from zero, the G curves move towards the T curve but begin to 
move away again as c continues to increase. For Q greater than about 0.0365, 
no intersection between the G and T curves takes place. This behaviour of the 
G curves causes the neutral stability curves to be closed curves thus giving a 
minimum, as well as a maximum critical Reynolds number beyond which all 
two-dimensional disturbances are stable. As a increases, the neutral stability 
curves shrink in area turning into a point for Q = 0.0365 and vanishing com- 
pletely for values of Q greater than this. 

The numerical analysis described above shows the behaviour of the inviscid 
part of the characteristic equation (5.2) for small values of a, c to be very different 
when Q > 0 from when Q = 0. This is caused by the change in the behaviour of 
its imaginary part and may be seen from the following. 

For small values of a it can be shown by expanding (4.6) that K(6)  N l/S, and, 
if we also ignore terms O(clogc), then it can be shown that (5.3) reduces to 

T(To) = 1 - Sjc. (6.1) 

If Q = 0, then S = a, and the imaginary part of the right-hand side of (6.1) is 
zero. But when Q += 0, then, when c --f 0 for a fixed value of a, the imaginary part 
tends to infinity. Now the imaginary part of the Tietjens function T(q,) has a 
maximum value of about 0.32, so that for sufficiently small values of c (6.1) 
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has no solution. The equation that determines the eigenvalue R on the curves of 
neutral stability is 

- R$ = 7 0  .- 

y,{a( 1 - C)}* ' 

and since c cannot be zero yc is also not zero, and so 2 cannot become infinite. 
We deduce therefore that the curves of neutral stability are closed for all Q > 0. 

7. Correction 'for three-dimensional disturbances 
It is only when two-dimensional disturbances are considered that we obtain 

this rather curious result that instability occurs for a, finite range of the Reynolds 
number. We now show how the results obtained should be modified to give the 
minimum critical Reynolds number of all disturbances. The method was pointed 
out by Hunt (1966); and for a detailed explanation the reader must refer to his 
paper. 

By choosing to  consider an equivalent two-dimensional problem to the one 
posed by (2.7) we effectively reduce the parameters R and Q for a given flow by 
a factor cos 8, 8 = tan-l(a3/al) being the angle made by the disturbance with the 
flow direction. So that the relationships between R ,  Q the given parameters of a 
real flow and B, Q the parameters artificially introduced for the purpose of simpli- 
fying the analysis are R = R C O S ~ ,  0 = Q C O S ~ .  

From the neutral stability curves in figure 4 we deduce a relationship between Q 
and R of the type 

giving $he critical Reynolds number for the two-dimensional disturbances. 
This is shown as the curve 8 = 0 in figure 6. 

Substitution from (7 .1)  into (7.2) gives the equa.tioii 

from which the relationship between Q and R,,,, for any value of 8 may be calcu- 
lated. We have done this for # = 30", 60" and the result is shown in figure 6. 
Observe that these curves start above the curve 8 = 0 but eventually cross over 
and lie below, giving, after a certain value of Q, a value for the critical Reynolds 
number which is less than the corresponding value on the curve 8 = 0. The true 
critical Reynolds number is given by the curve 0 = 0, only for values of Q < Qo 
where Qo is the abscissa of the point where the tangent from the origin touches 
the curve 8 = 0. For values of Q > Qo the points on the tangent determine the 
minimum value. The Rcrit curve, taking into account all disturbances, is shown 
by the thick lines in figure 6. Hunt (1966) has shown that for Q > Qo the most 
unstable disturbances travel at an angle O* with the flow direction such that 

case* = 

In  our particular case we found Qo to be about 0.017, so that this relationship 

(7 .4)  
becomes 0-017 

case* + ~- 
Q '  
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In  figure 7, we have plotted Rcrit against the parameter M where 

and r depends upon the fluid properties only. 

M = J(RQ) = J(A2ERm) = yR1, 

733 

Unstable for.al1 
disturbances 

Stable for 2 -0  
disturbances 

Unstable for 3-0 
disturbances 

0 001 002 Q.03 004 005 0.06 

Q 
FIGURE 6. Stability limits in terms of Reynolds number and Q .  

Since M is proportional to the applied parallel magnetic field, the (Rcrit, M ) -  
curves are much more instructive of the effect of the magnetic field than the 
(Rcrit, &)-curves (& conbains a velocity term). For large values of M the relation- 
ship between Rcrit and M is 

For a given value of M the angle 6* at which the most unstable disturbance 
travels is given by 40 

cost?* + - 
M '  

Rcrit + 2.3 x 103M. (7.5) 

(7.6) 
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We may note as an example that when Jl = 80 the most unstable disturbance 
makes an angle of 60" with the flow direction. 

/ 
/ 

/ 
/ 

/ 
/ 

/ 

// 
/ 

/ 
/ 

M 

FIGURE 7. Stability limits in terms of Reynolds number and M .  

8. Concluding remarks 
The exponential profile occurring in this problem has been analysed for 

stability in the non-conducting case by several authors. It was Freeman (see 
Chiarulli & Freeman 1948) who showed that with this profile the inviscid form 
of the Orr-Sommerfeld equation can be solved exactly by transforming it to a 
hypergeometric equation. The transform we effected in our case was suggested 
by his. The value of the exact solution lies in the understanding it provides of the 
differences in the analytical structure of the inviscid equation in bhe conducting 
and non-conducting cases. Thus we are able to explain the closure of our neutral 
stability curves, and, though we have not made it explicit in this paper, we feel 
that considerably more insight is to be gained through the study of this exact 
solution. 

It would be interesting 60 explain the physical mechanism which causes the  
three-dimensional disturbances to play a different role in the conducting flows, 
and particularly for the existence of Qo, the value of Q after which these distur- 
bances become important. But the author has not been able to do so satisfac- 
torily and leaves this to someone with greater physical insight. 
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The investigation reported here formed part of a Ph.D. thesis submitted in the 
University of London, in March 1967. The author is greatly indebted to Dr 
D. H. Michael of University College London, who suggested the problem and who 
throughout this research gave helpful guidance. Some of this work grew from a 
fruitful conversation wibh Mr J. C. R. Hunt of the Central Electricity Generating 
Board, and the author wishes to record his gratitude for this. Thanks are due to 
Miss S. Burrough of University College London, who helped with a great deal of 
the numerical work involved. Finally, the author wishes to record his deeply 
felt gratitude to the Science Research Council who provided sustenance during 
the author's period of Research Studentship in the form of a grant. 
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